Государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа № 13 имени участника Великой Отечественной войны Н.И.Передумова города Жигулёвска городского округа Жигулёвск Самарской области (ГБОУ СОШ № 13)

PACCMOTPEHO

методическим объединением учителей точных предметов протокол от 27.08.2025г. № 1

ПРОВЕРЕНО

и.о. заместителя директора по учебно-воспитательной работе Фоменко Л.И. 28.08.2025г.

УТВЕРЖДЕНО директором ГБОУ СОШ № 13 К.Ф. Шипилиным приказ от 01.09.2025г № 266-од

Рабочая программа

элективного курса по физике «Решение задач ЕГЭ»

для среднего общего образования

срок освоения программы: 1 год (11 класс)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Данный курс направлен на обеспечение дополнительной поддержки обучающихся для сдачи ЕГЭ по физике, на углубление учебного материала.

Рабочая программа согласована с требованиями государственного образовательного стандарта и содержанием основной образовательной программой курса физики средней общеобразовательной школы.

Решение физических задач – один из основных методов обучения физике.

С помощью решения задач обобщаются знания о конкретных объектах и явлениях, создаются и решаются проблемные ситуации, формируют практические и интеллектуальные умения, сообщаются знания их истории, науки и техники, формируются такие качества личности, как целеустремленность, настойчивость, аккуратность, внимательность, дисциплинированность, развиваются эстетические чувства, формируются творческие способности.

В период ускорения научно — технического прогресса на каждом рабочем необходимы умения ставить и решать задачи науки, техники и жизни. Поэтому целью физического образования является формирование умений работать со школьной учебной физической задачей.

Последовательно это можно сделать в рамках предлагаемой рабочей программы целями которой являются:

-развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний;

-воспитание духа сотрудничества в процессе совместного выполнения задач;

- овладение строить модели, устанавливать границы их применимости;
- -применять знания по физики для объяснения явления природы, свойств вещества, решения физических задач, самостоятельного приобретения и оценки новой информации физического содержания, использования современных информационных технологий;

-использование приобретенных знаний и умений для решения практических, жизненных задач.

Элективный курс «Решение задач ЕГЭ» рассчитан на обучающихся 11 класса. Рабочая программа составлена на основе авторских программ:

- 1. В. Л. Орлов, Ю. А. Сауров, «Методы решения физических задач», М., Дрофа, 2005 год.
- 2. Н. И. Зорин. Элективный курс «Методы решения физических задач: 10-11 классы», М., ВАКО, 2007 год (мастерская учителя)

Настоящий курс рассчитан на преподавание в объеме 34 часа (1 час в неделю). Цель данного курса углубить и систематизировать знания обучающихся 11 класса

по физике путем решения разнообразных задач и способствовать их профессиональному определению.

Его основная направленность - подготовить к ЕГЭ с опорой на знания и умения обучающихся, а также углублению знаний по темам при изучении курса физики в 11 классе.

ПЛАНИРУМЫЕ РЕЗУЛЬТАТЫ

В результате изучения программы учащиеся должны знать и уметь:

- смысл физических законов;
- алгоритм решения физических задач;
- применять знания по физике для объяснения различных физических
- явлений;
- использовать современные информационные технологии;
- самостоятельно решать задачи повышенной сложности;
- применять свои знания на практике;
- исследовать полученный результат;
- выполнять самооценку своих результатов.

СОДЕРЖАНИЕ ЭЛЕКТИВНОГО КУРСА

Физическая задача. Классификация задач (2 часа)

Что такое физическая задача? Состав физической задачи. Классификация физических задач по требованию, содержанию, способу задания и решения. Примеры задач всех видов.

Правила и приемы всех видов задач (2 часа)

Общие требования при решении физических задач. Этапы решения задачи. Анализ решения и оформление решения. Различные приемы и способы решения: геометрические приемы, алгоритмы, аналогии.

Динамика и статика (6 часа)

Решение задач по алгоритму на законы Ньютона с различными силами (силы упругости, трения, сопротивления). Координатный метод решения задач по динамике по алгоритму: наклонная плоскость, вес тела, задачи с блоками и на связанные тела.

Решение задач на движение под действие сил тяготения: свободное падение, движение тела брошенного вертикально вверх, движение тела брошенного под углом к горизонту. Алгоритм решения задач на определение дальности полета, времени полета, максимальной высоты подъема тела. Движение материальной точки по окружности. Период обращения и частота обращения. Циклическая частота. Угловая скорость. Центростремительное ускорение. Космические скорости. Решение астрономических задач на движение планет и спутников. Условия

равновесия тел. Момент силы. Центр тяжести тела. Задачи на определение характеристик равновесия физических систем и алгоритм их решения.

Законы сохранения (3 часа)

Импульс. Закон сохранения импульса. Импульс тела и импульс силы. Решение задач на второй закон Ньютона в импульсной форме. Замкнутые системы. Абсолютно упругое и неупругое столкновения. Алгоритм решение задач на сохранение импульса и реактивное движение.

Строение и свойства газов, жидкостей и твёрдых тел (4 часа)

Решение задач на основные характеристики молекул на основе знаний по химии и физики. Решение задач на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах. Графическое решение задач на изопроцессы. Алгоритм решения задач на определение характеристик влажности воздуха. Решение задач на определение характеристик твёрдого тела: абсолютное и относительное удлинение, тепловое расширение, запас прочности, сила упругости.

Основы термодинамики (3 часа)

Внутренняя энергия одноатомного газа. Работа и количество теплоты. Алгоритм решения задач на уравнение теплового баланса. Первый закон термодинамики. Адиабатный процесс. Тепловые двигатели. Расчет КПД тепловых установок графическим способом.

Электрическое и магнитное поля (4 часа)

Задачи разных видов на описание электрического поля различными средствами: законами сохранения заряда и законом Кулона, силовыми линиями, напряженностью, разностью потенциалов, энергией. Алгоритм решения задач: динамический и энергетический. Решение задач на описание систем конденсаторов. Задачи разных видов на описание магнитного поля тока: магнитная индукция и магнитный поток, сила Ампера и сила Лоренца.

Законы постоянного тока (3 часа)

Задачи на различные приемы расчета сопротивления сложных электрических цепей. Задачи разных видов на описание электрических цепей постоянного электрического тока с помощью закона Ома для замкнутой цепи, закона Джоуля — Ленца, законов последовательного и параллельного соединений.

Электромагнитные колебания и волны (7 часов)

Задачи разных видов на описание явления электромагнитной индукции: закон электромагнитной индукции, правило Ленца, индуктивность. Уравнение гармонического колебания и его решение на примере электромагнитных колебаний. Решение задач на характеристики колебаний, построение графиков. Переменный электрический ток: решение задач методом векторных диаграмм.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

****	TECKOE ISTAITHI OBTAITHE	
№	Основное содержание разделов рабочей программы	Кол-во часов
	Физическая задача. Классификация задач. (2ч)	
1	Что такое физическая задача? Состав физической задачи.	1
	Классификация физических задач по	
	требованию, содержанию, способу задания и решения.	
2	Примеры задач всех видов	1
	Правила и приемы решения задач всех видов. (2ч)	<u>I</u>
3	Общие требования при решении задач. Этапы решения	1
	задач	
4	Анализ решения и оформление решения. Различные	1
	приемы и способы решения: геометрические приемы,	
	алгоритмы, аналогии.	
	Динамика и статика. (6ч)	
5	Решение задач по алгоритму на законы Ньютона с	1
	различными силами (силы упругости, трения,	
	сопротивления).	
6	Координатный метод решения задач по динамике по	1
	алгоритму: наклонная плоскость, вес тела, задачи с	
	блоками и на связанные тела.	
7	Решение задач на движение под действие сил тяготения:	1
	свободное падение, движение тела брошенного	
	вертикально вверх, движение тела, брошенного под углом к	
	горизонту.	
	Алгоритм решения задач на определение дальности полета,	
	времени полета, максимальной высоты подъема тела.	
8	Движение материальной точки по окружности. Период	1
	обращения и частота обращения.	
	Циклическая частота. Угловая скорость.	
	Центростремительное ускорение.	
9	Космические скорости. Решение астрономических	1
	задач на движение планет и спутников.	
10	Условия равновесия тел. Момент силы. Центр тяжести	1
	тела. Задачи на определение характеристик равновесия,	
	физических систем и алгоритм их решения.	
	Законы сохранения. (3ч)	
11	Импульс. Закон сохранения импульса. Импульс тела и	1
	импульс силы. Решение задач на второй закон Ньютона в	
	импульсной форме. Классификация задач по механике	
12	Замкнутые системы. Абсолютно упругое и	1
14	неупругое столкновения.	1
	mej mej i or exemination.	

13	Алгоритм решение задач на сохранение импульса и	1	
	реактивное движение.		
Строение и свойства газов, жидкостей и твердых тел. (4ч)			
14	Решение задач на основные характеристики молекул на	1	
	основе знаний по химии и физики. Решение задач на		
	описание поведения идеального газа: основное уравнение		
	МКТ, определение скорости молекул, характеристики		
1.5	состояния газа в изопроцессах.	1	
15	Графическое решение задач на изопроцессы	1	
16	Алгоритм решения задач на определение	1	
1.7	характеристик влажности воздуха.	1	
17	Решение задач на определение характеристик	1	
	твёрдого тела: абсолютное и относительное		
	удлинение, тепловое расширение, запас прочности, сила		
	упругости.		
10	Основы термодинамики. (3ч)	1	
18	Внутренняя энергия одноатомного газа. Работа и	1	
10	количество теплоты.	1	
19	Алгоритм решения задач на уравнение теплового баланса.	1	
20	Первый закон термодинамики. Адиабатный процесс.	1	
	Тепловые двигатели. Расчет КПД тепловых установок		
	графическим способом.		
21.00	Электрическое и магнитное поле. (4ч)		
21-22	Задачи разных видов на описание электрического поля	2	
	различными средствами: законами сохранения заряда и		
	законом Кулона, силовыми линиями,		
22	напряженностью, разностью потенциалов, энергией.	1	
23	Алгоритм решения задач: динамический и энергетический.	1	
	Решение задач на описание систем конденсаторов.		
24	Задачи разных видов на описание магнитного поля тока:	1	
	магнитная индукция и магнитный поток, сила Ампера и		
	сила Лоренца.		
	Постоянный электрический ток. (3ч)		
25	Задачи на различные приемы расчета сопротивления	1	
	сложных электрических цепей, законы последовательного		
26	и параллельного соединений.	1	
26	Задачи разных видов на описание электрических цепей	1	
	постоянного электрического тока с помощью закона Ома		
27	для замкнутой цепи	1	
27	Закон Джоуля — Ленца	1	

Электромагнитные колебания и волны. (7ч)			
28	Задачи разных видов на описание явления	1	
	электромагнитной индукции: закон электромагнитной		
	индукции, правило Ленца, индуктивность.		
29	Уравнение гармонического колебания и его решение	1	
	на примере электромагнитных колебаний.		
30	Решение задач на характеристики колебаний, построение	1	
	графиков.		
31.	Переменный электрический ток: решение задач методом	1	
	векторных диаграмм.		
32-33	Методы решения задач по геометрической оптике	2	
34	Законы фотоэффекта	2	